Step 1: Use the quadratic formula
The quadratic formula to solve the equation \( ax^2 + bx + c = 0 \) is:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
For the given equation \( 2x^2 - 4x - 6 = 0 \), we have:
- \( a = 2 \),
- \( b = -4 \),
- \( c = -6 \).
Step 2: Substitute the values into the quadratic formula
Substitute \( a = 2 \), \( b = -4 \), and \( c = -6 \) into the quadratic formula:
\[
x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times 2 \times (-6)}}{2 \times 2}
\]
\[
x = \frac{4 \pm \sqrt{16 + 48}}{4}
\]
\[
x = \frac{4 \pm \sqrt{64}}{4}
\]
\[
x = \frac{4 \pm 8}{4}
\]
Step 3: Solve for the two roots
The two possible values for \( x \) are:
\[
x = \frac{4 + 8}{4} = \frac{12}{4} = 3
\]
and
\[
x = \frac{4 - 8}{4} = \frac{-4}{4} = -1
\]
Answer: Therefore, the roots of the quadratic equation are \( x = 3 \, \text{or} \, x = -1 \). So, the correct answer is option (1).