Let \( \vec{a} \) and \( \vec{b} \) be non-collinear vectors. If vector \( \vec{r} \) is coplanar with \( \vec{a} \) and \( \vec{b} \), then show that there exist unique scalars \( t_1 \) and \( t_2 \) such that \( \vec{r} = t_1 \vec{a} + t_2 \vec{b} \). For \( \vec{r} = 2\hat{i} + 7\hat{j} + 9\hat{k} \), \( \vec{a} = \hat{i} + 2\hat{j} \), \( \vec{b} = \hat{j} + 3\hat{k} \), find \( t_1, t_2 \).