Step 1: Simplify the integrand.
First, let's simplify the integrand \( \frac{x + \sqrt{1 - x^2}}{\sqrt{1 - x^2}} \). We can break this up as:
\[
\frac{x}{\sqrt{1 - x^2}} + \frac{\sqrt{1 - x^2}}{\sqrt{1 - x^2}} = \frac{x}{\sqrt{1 - x^2}} + 1
\]
Thus, the integral becomes:
\[
\int \sin^{-1}x \left( \frac{x}{\sqrt{1 - x^2}} + 1 \right) dx
\]
Step 2: Split the integral.
We can now split the integral into two parts:
\[
\int \sin^{-1}x \cdot \frac{x}{\sqrt{1 - x^2}} \, dx + \int \sin^{-1}x \, dx
\]
Step 3: Solve the first integral.
We make the substitution \( u = \sin^{-1}x \), so that \( x = \sin u \) and \( dx = \cos u \, du \). The first integral becomes:
\[
\int u \cdot \frac{\sin u}{\cos u} \cdot \cos u \, du = \int u \sin u \, du
\]
This can be solved by integration by parts. Let \( v = u \) and \( dw = \sin u \, du \), then:
\[
\int u \sin u \, du = -u \cos u + \int \cos u \, du = -u \cos u + \sin u
\]
Step 4: Solve the second integral.
The second integral is simply:
\[
\int \sin^{-1}x \, dx = \int u \, du = \frac{u^2}{2} + C
\]
Step 5: Combine the results.
Thus, the original integral becomes:
\[
\boxed{-\sin^{-1}x \cos(\sin^{-1}x) + \sin(\sin^{-1}x) + \frac{(\sin^{-1}x)^2}{2} + C}
\]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :