Question:

Find the inverse of the matrix \[ \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] by elementary row transformations.

Show Hint

When finding the inverse using elementary row operations, always perform the same operations on the identity matrix.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We are given the matrix \( A = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \) and need to find its inverse using elementary row transformations. The augmented matrix for this operation is: \[ \left( \begin{array}{ccc|ccc} \cos \theta & -\sin \theta & 0 & 1 & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right) \]

Step 1: Make the first element in the first column equal to 1. \\ We divide the first row by \( \cos \theta \) (assuming \( \cos \theta \neq 0 \)): \[ R_1 \to \frac{1}{\cos \theta} R_1 \] The augmented matrix becomes: \[ \left( \begin{array}{ccc|ccc} 1 & -\tan \theta & 0 & \sec \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right) \] Step 2: Make the first element in the second column equal to 0. \\ We subtract \( \sin \theta \) times the first row from the second row: \[ R_2 \to R_2 - \sin \theta \cdot R_1 \] The augmented matrix becomes: \[ \left( \begin{array}{ccc|ccc} 1 & -\tan \theta & 0 & \sec \theta & 0 & 0 \\ 0 & \cos \theta & 0 & -\sin \theta \sec \theta & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right) \] Step 3: Make the second element in the second column equal to 1. \\ We divide the second row by \( \cos \theta \): \[ R_2 \to \frac{1}{\cos \theta} R_2 \] The augmented matrix becomes: \[ \left( \begin{array}{ccc|ccc} 1 & -\tan \theta & 0 & \sec \theta & 0 & 0 \\ 0 & 1 & 0 & -\sin \theta \sec^2 \theta & \sec \theta & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right) \] Step 4: Make the second element in the first column equal to 0. \\ We add \( \tan \theta \) times the second row to the first row: \[ R_1 \to R_1 + \tan \theta \cdot R_2 \] The augmented matrix becomes: \[ \left( \begin{array}{ccc|ccc} 1 & 0 & 0 & \sec \theta & 0 & 0 \\ 0 & 1 & 0 & -\sin \theta \sec^2 \theta & \sec \theta & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right) \] Thus, the inverse of the matrix is: \[ A^{-1} = \begin{pmatrix} \sec \theta & 0 & 0 \\ -\sin \theta \sec^2 \theta & \sec \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

Final Answer: \[ \boxed{A^{-1} = \begin{pmatrix} \sec \theta & 0 & 0 \\ -\sin \theta \sec^2 \theta & \sec \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}} \]

Was this answer helpful?
0
0