Step 1: Simplify the equation.
The given equation is:
\[
x \frac{dy}{dx} = x \cdot \tan \left( \frac{y}{x} \right) + y
\]
Divide through by \( x \):
\[
\frac{dy}{dx} = \tan \left( \frac{y}{x} \right) + \frac{y}{x}
\]
Step 2: Use substitution.
Let \( v = \frac{y}{x} \), so that \( y = vx \). Differentiating both sides with respect to \( x \):
\[
\frac{dy}{dx} = v + x \frac{dv}{dx}
\]
Substitute this into the original equation:
\[
v + x \frac{dv}{dx} = \tan(v) + v
\]
Cancel the \( v \) terms:
\[
x \frac{dv}{dx} = \tan(v)
\]
Step 3: Solve the resulting equation.
Separate the variables:
\[
\frac{dv}{\tan(v)} = \frac{dx}{x}
\]
Integrating both sides:
\[
\int \frac{dv}{\tan(v)} = \int \frac{dx}{x}
\]
We know that \( \int \frac{dv}{\tan(v)} = \ln|\sin(v)| \) and \( \int \frac{dx}{x} = \ln|x| \), so:
\[
\ln|\sin(v)| = \ln|x| + C
\]
Exponentiating both sides:
\[
|\sin(v)| = Cx
\]
Substitute \( v = \frac{y}{x} \) back into the equation:
\[
|\sin \left( \frac{y}{x} \right)| = Cx
\]
Thus, the solution to the differential equation is:
\[
\boxed{|\sin \left( \frac{y}{x} \right)| = Cx}
\]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :