Step 1: Factor the denominator and set up the partial fraction decomposition.
\[ x^2+6x+5 = (x+1)(x+5) \]
\[ \frac{1}{(x+1)(x+5)} = \frac{A}{x+1} + \frac{B}{x+5} \]
Multiplying by the denominator gives \( 1 = A(x+5) + B(x+1) \).
Step 2: Solve for A and B.
If \( x = -1 \), then \( 1 = A(4) \implies A = \frac{1}{4} \).
If \( x = -5 \), then \( 1 = B(-4) \implies B = -\frac{1}{4} \).
Step 3: Rewrite the integral with the partial fractions.
\[ \int_1^2 \left(\frac{1/4}{x+1} - \frac{1/4}{x+5}\right) dx = \frac{1}{4} \int_1^2 \left(\frac{1}{x+1} - \frac{1}{x+5}\right) dx \]
Step 4: Integrate and evaluate the definite integral.
\[ \frac{1}{4} [\ln|x+1| - \ln|x+5|]_1^2 = \frac{1}{4} \left[\ln\left|\frac{x+1}{x+5}\right|\right]_1^2 \]
\[ = \frac{1}{4} \left( \ln\left|\frac{2+1}{2+5}\right| - \ln\left|\frac{1+1}{1+5}\right| \right) = \frac{1}{4} \left( \ln\left(\frac{3}{7}\right) - \ln\left(\frac{2}{6}\right) \right) \]
\[ = \frac{1}{4} \left( \ln\left(\frac{3}{7}\right) - \ln\left(\frac{1}{3}\right) \right) = \frac{1}{4} \ln\left(\frac{3/7}{1/3}\right) = \frac{1}{4} \ln\left(\frac{9}{7}\right) \]