Question:

Solve the following equations by the method of inversion: \( 2x-y+z=1 \), \( x+2y+3z=8 \), \( 3x+y-4z=1 \).

Show Hint

The matrix inversion method is procedural. Be careful with arithmetic, especially with negative signs when calculating the determinant and cofactors. Always check your final answer by plugging it back into the original equations.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The system can be written in matrix form \( AX=B \), where: \[ A = \begin{bmatrix} 2 & -1 & 1
1 & 2 & 3
3 & 1 & -4 \end{bmatrix}, \quad X = \begin{bmatrix} x
y
z \end{bmatrix}, \quad B = \begin{bmatrix} 1
8
1 \end{bmatrix} \] The solution is \( X = A^{-1}B \).
Step 1: Find the determinant of A. \[ |A| = 2(-8-3) - (-1)(-4-9) + 1(1-6) = 2(-11) + 1(-13) - 5 = -22 - 13 - 5 = -40 \] Step 2: Find the adjugate of A.
The matrix of cofactors is: \[ C = \begin{bmatrix} -11 & 13 & -5
-3 & -11 & -5
-5 & -5 & 5 \end{bmatrix} \] The adjugate is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{bmatrix} -11 & -3 & -5
13 & -11 & -5
-5 & -5 & 5 \end{bmatrix} \] Step 3: Find the inverse of A. \[ A^{-1} = \frac{1}{|A|} \text{adj}(A) = -\frac{1}{40} \begin{bmatrix} -11 & -3 & -5
13 & -11 & -5
-5 & -5 & 5 \end{bmatrix} \] Step 4: Calculate \( X = A^{-1}B \). \[ X = -\frac{1}{40} \begin{bmatrix} -11 & -3 & -5
13 & -11 & -5
-5 & -5 & 5 \end{bmatrix} \begin{bmatrix} 1
8
1 \end{bmatrix} = -\frac{1}{40} \begin{bmatrix} -11(1) - 3(8) - 5(1)
13(1) - 11(8) - 5(1)
-5(1) - 5(8) + 5(1) \end{bmatrix} \] \[ X = -\frac{1}{40} \begin{bmatrix} -11 - 24 - 5
13 - 88 - 5
-5 - 40 + 5 \end{bmatrix} = -\frac{1}{40} \begin{bmatrix} -40
-80
-40 \end{bmatrix} = \begin{bmatrix} 1
2
1 \end{bmatrix} \] Thus, \( x=1, y=2, z=1 \).
Was this answer helpful?
0
0