The system can be written in matrix form \( AX=B \), where:
\[ A = \begin{bmatrix} 2 & -1 & 1
1 & 2 & 3
3 & 1 & -4 \end{bmatrix}, \quad X = \begin{bmatrix} x
y
z \end{bmatrix}, \quad B = \begin{bmatrix} 1
8
1 \end{bmatrix} \]
The solution is \( X = A^{-1}B \).
Step 1: Find the determinant of A.
\[ |A| = 2(-8-3) - (-1)(-4-9) + 1(1-6) = 2(-11) + 1(-13) - 5 = -22 - 13 - 5 = -40 \]
Step 2: Find the adjugate of A.
The matrix of cofactors is:
\[ C = \begin{bmatrix} -11 & 13 & -5
-3 & -11 & -5
-5 & -5 & 5 \end{bmatrix} \]
The adjugate is the transpose of the cofactor matrix:
\[ \text{adj}(A) = C^T = \begin{bmatrix} -11 & -3 & -5
13 & -11 & -5
-5 & -5 & 5 \end{bmatrix} \]
Step 3: Find the inverse of A.
\[ A^{-1} = \frac{1}{|A|} \text{adj}(A) = -\frac{1}{40} \begin{bmatrix} -11 & -3 & -5
13 & -11 & -5
-5 & -5 & 5 \end{bmatrix} \]
Step 4: Calculate \( X = A^{-1}B \).
\[ X = -\frac{1}{40} \begin{bmatrix} -11 & -3 & -5
13 & -11 & -5
-5 & -5 & 5 \end{bmatrix} \begin{bmatrix} 1
8
1 \end{bmatrix} = -\frac{1}{40} \begin{bmatrix} -11(1) - 3(8) - 5(1)
13(1) - 11(8) - 5(1)
-5(1) - 5(8) + 5(1) \end{bmatrix} \]
\[ X = -\frac{1}{40} \begin{bmatrix} -11 - 24 - 5
13 - 88 - 5
-5 - 40 + 5 \end{bmatrix} = -\frac{1}{40} \begin{bmatrix} -40
-80
-40 \end{bmatrix} = \begin{bmatrix} 1
2
1 \end{bmatrix} \]
Thus, \( x=1, y=2, z=1 \).