Step 1: Identify the integral's form. It matches the special property \( \int e^x [f(x) + f'(x)] dx = e^x f(x) + c \).
Step 2: Let \( f(x) = \frac{1}{x} \). Find its derivative, \( f'(x) \).
\[ f'(x) = \frac{d}{dx}(x^{-1}) = -1 \cdot x^{-2} = -\frac{1}{x^2} \]
Step 3: Confirm that the integrand matches the form \( e^x[f(x) + f'(x)] \).
\[ e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) = e^x [f(x) + f'(x)] \]
The form is correct. Therefore, the integral is \( e^x f(x) + c \).
Step 4: Substitute back \( f(x) = \frac{1}{x} \) to get the final answer.
\[ \int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx = \frac{e^x}{x} + c \]