Step 1: Let \( I = \int_2^7 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9-x}} dx \). Use the property \( \int_a^b f(x) dx = \int_a^b f(a+b-x) dx \). Here, \( a=2, b=7 \), so \( a+b=9 \).
Step 2: Apply the property by replacing \( x \) with \( 9-x \).
\[ I = \int_2^7 \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{9-(9-x)}} dx = \int_2^7 \frac{\sqrt{9-x}}{\sqrt{9-x} + \sqrt{x}} dx \]
Step 3: Add the original and transformed integrals.
\[ 2I = \int_2^7 \frac{\sqrt{x} + \sqrt{9-x}}{\sqrt{x} + \sqrt{9-x}} dx = \int_2^7 1 \, dx \]
Step 4: Evaluate the simple integral.
\[ 2I = [x]_2^7 = 7 - 2 = 5 \implies I = \frac{5}{2} \]