To find the range of \( f(g(x)) \), we need to understand the range of \( g(x) \) and how \( f(x) \) behaves over that range. Let's break this down step-by-step.
(0, 1]
The correct answer is: (0, 1].
To find the range of \( f(g(x)) \), we start by evaluating \( g(x) \) and then substitute it into \( f(x) \) according to the intervals provided.
Evaluate \( g(x) \):
\(g(x) = \begin{cases} x, & x \in [0, 1] \\ -x, & x \in (-3, 0) \end{cases}\)
For \( x \in [0, 1] \), \( g(x) = x \) which gives \( g(x) \in [0, 1] \).
For \( x \in (-3, 0) \), \( g(x) = -x \) which gives \( g(x) \in (0, 3] \).
Therefore, the range of \( g(x) \) is \((0, 3]\).
Since \( g(x) \in (0, 3] \), we use the definition of \( f(x) \) for \( x \in [0, 3] \):
\(f(g(x)) = 1 - \frac{g(x)}{3}\)
Determine the range of \( f(g(x)) \) by substituting values from the range of \( g(x) \). For \( g(x) = 0 \), \( f(g(x)) = 1 - \frac{0}{3} = 1 \). For \( g(x) = 3 \), \( f(g(x)) = 1 - \frac{3}{3} = 0 \). Thus, as \( g(x) \) varies over the interval \((0, 3]\), \( f(g(x)) \) varies over the interval \([0, 1]\).
The range of \( f(g(x)) \) is \([0, 1]\).
A relation R is defined in the set N as follows:
R = (x, y) : x = y - 3, y > 3
Then, which of the following is correct?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:

A relation R from a non-empty set B is a subset of the cartesian product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A × B.
A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B. In other words, no two distinct elements of B have the same pre-image.
Relations and functions can be represented in different forms such as arrow representation, algebraic form, set-builder form, graphically, roster form, and tabular form. Define a function f: A = {1, 2, 3} → B = {1, 4, 9} such that f(1) = 1, f(2) = 4, f(3) = 9. Now, represent this function in different forms.
