Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
\(|A| = \alpha^2 - \beta^2\)
We know that:
\(|2A| = 2^3 |A| = 2^{21} \Rightarrow |A| = 2^4 = 16\)
\(\alpha^2 - \beta^2 = 16\)
Factor as \((\alpha + \beta)(\alpha - \beta) = 16\).
Possible integer solutions for \((\alpha, \beta)\) that satisfy the equation give \(\alpha = 4\) or \(\alpha = 5\).
Since \(\alpha = 5\) satisfies the condition, we choose \(\alpha = 5\).
So, the correct answer is: 5
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Match List-I with List-II: List-I
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.