Let the given complex number be:
\[ z = \frac{1}{2} - 2i \]
We are given the equation:
\[ |z + 1| = \alpha z + \beta (1 + i) \]
Substitute the value of \( z \):
\[ \left|\frac{3}{2} - 2i\right| = \frac{\alpha}{2} - 2\alpha i + \beta + \beta i \]
Now, simplify the right-hand side:
\[ \left|\frac{3}{2} - 2i\right| = \left(\frac{\alpha}{2} + \beta\right) + (\beta - 2\alpha)i \]
To satisfy equality between magnitudes and arguments, we compare both sides. From this, we obtain the following relationships:
\[ \beta = 2\alpha \]
\[ \frac{\alpha}{2} + \beta = \sqrt{\left(\frac{9}{4}\right) + 4} \]
Solving these gives:
\[ \alpha + \beta = 3 \]
The relationship between \( \alpha \) and \( \beta \) is: \[ \boxed{\alpha + \beta = 3} \]
Hence, the correct option is: (2) 3
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:

Consider z1 and z2 are two complex numbers.
For example, z1 = 3+4i and z2 = 4+3i
Here a=3, b=4, c=4, d=3
∴z1+ z2 = (a+c)+(b+d)i
⇒z1 + z2 = (3+4)+(4+3)i
⇒z1 + z2 = 7+7i
Properties of addition of complex numbers
It is similar to the addition of complex numbers, such that, z1 - z2 = z1 + ( -z2)
For example: (5+3i) - (2+1i) = (5-2) + (-2-1i) = 3 - 3i
Considering the same value of z1 and z2 , the product of the complex numbers are
z1 * z2 = (ac-bd) + (ad+bc) i
For example: (5+6i) (2+3i) = (5×2) + (6×3)i = 10+18i
Properties of Multiplication of complex numbers
Note: The properties of multiplication of complex numbers are similar to the properties we discussed in addition to complex numbers.
Associative law: Considering three complex numbers, (z1 z2) z3 = z1 (z2 z3)
Read More: Complex Numbers and Quadratic Equations
If z1 / z2 of a complex number is asked, simplify it as z1 (1/z2 )
For example: z1 = 4+2i and z2 = 2 - i
z1 / z2 =(4+2i)×1/(2 - i) = (4+i2)(2/(2²+(-1)² ) + i (-1)/(2²+(-1)² ))
=(4+i2) ((2+i)/5) = 1/5 [8+4i + 2(-1)+1] = 1/5 [8-2+1+41] = 1/5 [7+4i]