Shortest distance between lines \(\frac{(x-5)}{4}\)=\(\frac{(y-3)}{6}\)=\(\frac{(z-2)}{4}\) and \(\frac{(x-3)}{7}=\frac{(y-2)}{5}=\frac{(z-9)}{6}\) is ?
\(\frac{190}{37}\)
\(\frac{190}{\sqrt{756}}\)
\(\frac{37}{190}\)
\(\frac{756}{\sqrt{190}}\)
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
Formula to find distance between two parallel line:
Consider two parallel lines are shown in the following form :
\(y = mx + c_1\) …(i)
\(y = mx + c_2\) ….(ii)
Here, m = slope of line
Then, the formula for shortest distance can be written as given below:
\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)
If the equations of two parallel lines are demonstrated in the following way :
\(ax + by + d_1 = 0\)
\(ax + by + d_2 = 0\)
then there is a little change in the formula.
\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)