Shortest distance between lines \(\frac{(x-5)}{4}\)=\(\frac{(y-3)}{6}\)=\(\frac{(z-2)}{4}\) and \(\frac{(x-3)}{7}=\frac{(y-2)}{5}=\frac{(z-9)}{6}\) is ?
\(\frac{190}{37}\)
\(\frac{190}{\sqrt{756}}\)
\(\frac{37}{190}\)
\(\frac{756}{\sqrt{190}}\)
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Formula to find distance between two parallel line:
Consider two parallel lines are shown in the following form :
\(y = mx + c_1\) …(i)
\(y = mx + c_2\) ….(ii)
Here, m = slope of line
Then, the formula for shortest distance can be written as given below:
\(d= \frac{|c_2-c_1|}{\sqrt{1+m^2}}\)
If the equations of two parallel lines are demonstrated in the following way :
\(ax + by + d_1 = 0\)
\(ax + by + d_2 = 0\)
then there is a little change in the formula.
\(d= \frac{|d_2-d_1|}{\sqrt{a^2+b^2}}\)