The length of the projection of a vector \(\vec u\) on a vector \(\vec v\) is \[ \text{Projection length}=\frac{|\vec u\cdot\vec v|}{|\vec v|} \] Here, \[ l=\frac{|\vec b\cdot(\vec a\times\vec c)|}{|\vec a\times\vec c|} \] Step 1: Evaluate the numerator \[ \vec b\cdot(\vec a\times\vec c) \] is a scalar triple product. Using the cyclic property, \[ \vec b\cdot(\vec a\times\vec c)=\vec c\cdot(\vec b\times\vec a) \] Since \[ \vec a\times\vec b=\vec c \quad\Rightarrow\quad \vec b\times\vec a=-\vec c \] \[ \vec b\cdot(\vec a\times\vec c) =\vec c\cdot(-\vec c) =-|\vec c|^2 \] Now, \[ \vec c=\hat j-\hat k \quad\Rightarrow\quad |\vec c|^2=1^2+(-1)^2=2 \] Hence, \[ |\vec b\cdot(\vec a\times\vec c)|=2 \] Step 2: Evaluate the denominator 
\[ \vec a\times\vec c=-2\hat i+\hat j+\hat k \] \[ |\vec a\times\vec c| =\sqrt{(-2)^2+1^2+1^2} =\sqrt6 \] Step 3: Find \(l\) \[ l=\frac{2}{\sqrt6} \] Step 4: Compute \(3l^2\) \[ 3l^2 =3\left(\frac{2}{\sqrt6}\right)^2 =3\cdot\frac{4}{6} =2 \] Answer: \(\boxed{2}\)



