Question:

Let S = 1, 2, 3, 4, 5, 6, 7. Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n) = f(m) \cdot f(n)$ for every $m, n \in S$ and $m \cdot n \in S$ is equal to _________. 
 

Show Hint

For functions with a multiplicative property, first identify the prime numbers in the domain. The function's values on these primes often determine its values on the composite numbers. Then, systematically count the valid choices for the prime images, ensuring the dependent images remain in the codomain.
Updated On: Jan 6, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 490

Solution and Explanation

Step 1: Value of \(f(1)\) Put \(m=1\). Since \(1\cdot n=n\in S\), \[ f(n)=f(1\cdot n)=f(1)\,f(n) \] As \(f(n)\neq 0\), we must have \[ f(1)=1 \] Step 2: Identify product relations in \(S\) All non-trivial products in \(S\) that remain in \(S\) are: \[ 2\cdot2=4,\qquad 2\cdot3=6 \] Thus, the functional conditions are: \[ f(4)=f(2)^2,\qquad f(6)=f(2)f(3) \] Step 3: Independent and dependent values The prime elements in \(S\) are: \[ 2,\;3,\;5,\;7 \] Values of \(f(5)\) and \(f(7)\) are completely free (no constraints). Values of \(f(4)\) and \(f(6)\) depend on \(f(2)\) and \(f(3)\). Step 4: Determine possible values of \(f(2)\) Since \(f(4)=f(2)^2\in S\): \[ f(2)=1 \Rightarrow f(4)=1 \in S \quad (\text{valid}) \] \[ f(2)=2 \Rightarrow f(4)=4 \in S \quad (\text{valid}) \] \[ f(2)\ge 3 \Rightarrow f(2)^2\ge 9 \notin S \quad (\text{invalid}) \] Hence, \[ f(2)\in\{1,2\} \] Step 5: Count possibilities Case I: \(f(2)=1\) Then \[ f(6)=f(2)f(3)=f(3)\in S \] So, \(f(3)\) has 7 choices. Number of choices in this case: \[ 7 \] Case II: \(f(2)=2\) Then \[ f(6)=2f(3)\in S \] Valid values of \(f(3)\): \[ f(3)=1\Rightarrow f(6)=2 \] \[ f(3)=2\Rightarrow f(6)=4 \] \[ f(3)=3\Rightarrow f(6)=6 \] So, \(f(3)\) has 3 choices. Number of choices in this case: \[ 3 \] Step 6: Free choices \[ f(5)\in S \Rightarrow 7 \text{ choices} \] \[ f(7)\in S \Rightarrow 7 \text{ choices} \] Total number of functions \[ (7+3)\times7\times7=490 \] Answer: \(\boxed{490}\)
Was this answer helpful?
0
0