Step 1: Value of \(f(1)\)
Put \(m=1\). Since \(1\cdot n=n\in S\),
\[
f(n)=f(1\cdot n)=f(1)\,f(n)
\]
As \(f(n)\neq 0\), we must have
\[
f(1)=1
\]
Step 2: Identify product relations in \(S\)
All non-trivial products in \(S\) that remain in \(S\) are:
\[
2\cdot2=4,\qquad 2\cdot3=6
\]
Thus, the functional conditions are:
\[
f(4)=f(2)^2,\qquad f(6)=f(2)f(3)
\]
Step 3: Independent and dependent values
The prime elements in \(S\) are:
\[
2,\;3,\;5,\;7
\]
Values of \(f(5)\) and \(f(7)\) are completely free (no constraints).
Values of \(f(4)\) and \(f(6)\) depend on \(f(2)\) and \(f(3)\).
Step 4: Determine possible values of \(f(2)\)
Since \(f(4)=f(2)^2\in S\):
\[
f(2)=1 \Rightarrow f(4)=1 \in S \quad (\text{valid})
\]
\[
f(2)=2 \Rightarrow f(4)=4 \in S \quad (\text{valid})
\]
\[
f(2)\ge 3 \Rightarrow f(2)^2\ge 9 \notin S \quad (\text{invalid})
\]
Hence,
\[
f(2)\in\{1,2\}
\]
Step 5: Count possibilities
Case I: \(f(2)=1\)
Then
\[
f(6)=f(2)f(3)=f(3)\in S
\]
So, \(f(3)\) has 7 choices.
Number of choices in this case:
\[
7
\]
Case II: \(f(2)=2\)
Then
\[
f(6)=2f(3)\in S
\]
Valid values of \(f(3)\):
\[
f(3)=1\Rightarrow f(6)=2
\]
\[
f(3)=2\Rightarrow f(6)=4
\]
\[
f(3)=3\Rightarrow f(6)=6
\]
So, \(f(3)\) has 3 choices.
Number of choices in this case:
\[
3
\]
Step 6: Free choices
\[
f(5)\in S \Rightarrow 7 \text{ choices}
\]
\[
f(7)\in S \Rightarrow 7 \text{ choices}
\]
Total number of functions
\[
(7+3)\times7\times7=490
\]
Answer: \(\boxed{490}\)