\(\sum_{\substack{i,j=0 \\ t \neq j}}^n\) \(^nC_i\ ^nC_j \)is equal to
f the maximum value of a, for which the function \(fa(x)=\tan^{−1}\ 2x−3ax+7\)is non-decreasing in \((−\frac{π}{6},\frac{π}{6})\), is a―, then \(f\overline{a}(\frac{π}{8}) \)is equal to
Let\(β = \lim_{x →0} \frac{αx-(e^{3x}-1)}{αx(e^{3x}-1) }\)for some\( α \in R.\)Then the value of α+β is
The value of \(\log_e2\frac{d}{dx}(\log_{cos x}\cosec x) \) at \(x=\frac{\pi}{4}\) is
For any real number x, let [ x ] denote the largest integer less than equal to x Let f be a real valued function defined on the interval [-10,10] by \(f(x)=\begin{cases} x-[x], & \text { if }(x) \text { is odd } \\ 1+[x]-x & \text { if }(x) \text { is even }\end{cases}\)Then the value of\( \frac{\pi^2}{10} \int\limits_{-10}^{10} f(x) \cos \pi x d x\) is :
The slope of the tangent to a curve C : y=y(x) at any point [x, y) on it is \(\frac{2 e ^{2 x }-6 e ^{- x }+9}{2+9 e ^{-2 x }}\) If C passes through the points \(\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right) \)and \(\left(\alpha, \frac{1}{2} e ^{2 \alpha}\right)\)$ then \(e ^\alpha\) is equal to :