Question:

For any real number x, let [ x ] denote the largest integer less than equal to x Let f be a real valued function defined on the interval [-10,10] by \(f(x)=\begin{cases} x-[x], & \text { if }(x) \text { is odd } \\ 1+[x]-x & \text { if }(x) \text { is even }\end{cases}\)Then the value of\( \frac{\pi^2}{10} \int\limits_{-10}^{10} f(x) \cos \pi x d x\) is :

Updated On: Mar 20, 2025
  • 4
  • 2
  • 1
  • 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct option is(A): 4.
Was this answer helpful?
0
1

Top Questions on limits and derivatives

View More Questions

Concepts Used:

Limits And Derivatives

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

Limit of a Function

Limits Formula:

Limits Formula
 Derivatives of a Function:

derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

 Derivatives of a Function

Properties of Derivatives:

Properties of Derivatives

Read More: Limits and Derivatives