For real number a, b (a > b > 0), let\(\text{{Area}} \left\{ (x, y) : x^2 + y^2 \leq a^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \geq 1 \right\} = 30\pi\)and \(\text{{Area}} \left\{ (x, y) : x^2 + y^2 \geq b^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\} = 18\pi\)Then the value of (a – b)2 is equal to _____.
Let y = y(x) be the solution curve of the differential equation\(\sin(2x^2) \log_e(\tan(x^2)) \,dy + (4xy - 4\sqrt{2}x\sin(x^2 - \frac{\pi}{4})) \,dx = 0, \quad 0 < x < \sqrt{\frac{\pi}{2}}\)which passes through the point \((\sqrt{\frac{π}{6}},1)\). Then \(|y(\sqrt{\frac{π}{3}})|\)is equal to _______.
Let f : R → R be a continuous function satisfying f(x) + f(x + k) = n, for all x ∈ R where k > 0 and n is a positive integer. If \(l_1 = \int_{0}^{4nk} f(x) \, dx\) and \(l_2 = \int_{-k}^{3k} f(x) \, dx\), then
Let for n = 1, 2, …, 50, Sn be the sum of the infinite geometric progression whose first term is n2 and whose common ratio is \(\frac{1}{(n+1)^2}\) . Then the value of \(\frac{1}{26} + \sum_{n=1}^{50} \left(S_n+\frac{2}{n+1}-n-1 \right)\) is equal to ________.
Let \(f(x)=max\left\{|x+1|,|x+2|,……,|x+5|\right\} \)Then \(\int_{-6}^{0} f(x) \, dx\)is equal to_______