| List II | List II |
|---|---|
| A. van't Hoff factor, i | I. Cryoscopic constant |
| B. $k_f$ | II. Isotonic solutions |
| C. Solution with same with same osmotic pressure | III. Normal molar mass /Abnormal molar mass |
| D. Azeotropes | IV. Solutions with same composition of vapour above it |
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Colligative Property of any substance is entirely dependent on the ratio of the number of solute particles to the total number of solvent particles but does not depend on the nature of particles. There are four colligative properties: vapor pressure lowering, boiling point elevation, freezing point depression, and osmotic pressure.
We can notice the colligative properties of arrangements by going through the accompanying examples: