Power gain in a CE transistor configuration depends on the current gain (\( \beta \)) and the resistance values of \( R_C \) and \( R_B \). Always ensure proper unit consistency when calculating.
Solution:
To find the value of \( x \), we calculate the power gain using the relation:
\[
\text{Power Gain} = \beta \times \frac{R_C}{R_B}.
\]
Step 1: Calculate Current Gain (\( \beta \))
From the given graph,
\[
\beta = \frac{I_C}{I_B}.
\]
For \( I_C = 50 \, \text{mA} \) and \( I_B = 500 \, \mu\text{A} \):
\[
\beta = \frac{50 \times 10^{-3}}{500 \times 10^{-6}} = 100.
\]
Step 2: Calculate Power Gain
Substitute \( \beta = 100 \), \( R_C = 1 \, \text{k}\Omega \), and \( R_B = 10 \, \text{k}\Omega \) into the power gain formula:
\[
\text{Power Gain} = \beta \times \frac{R_C}{R_B} = 100 \times \frac{1}{10} = 10.
\]
Step 3: Find \( x \)
Since the power gain is \( 10^x \):
\[
10^x = 10 \quad \Rightarrow \quad x = 1.
\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: