The elastic potential energy stored in a stretched wire is given by: \[ U = \frac{1}{2} \times \frac{F \Delta L}{A Y}, \] where:
Rearranging the formula for \( A \): \[ A = \frac{F \Delta L}{2 U Y}. \] The force \( F \) is given by: \[ F = Y \times \frac{\Delta L}{L}. \] Substitute \( F \) back into the equation for \( A \): \[ A = \frac{Y \times \frac{\Delta L}{L} \times \Delta L}{2 U Y} = \frac{\Delta L^2}{2 U \times L}. \] Substitute the given values: \[ A = \frac{(0.02)^2}{2 \times 80 \times 20} = \frac{0.0004}{3200}. \] Simplify: \[ A = 1.25 \times 10^{-7} \, \text{m}^2. \] Convert \( \text{m}^2 \) to \( \text{mm}^2 \): \[ A = 1.25 \times 10^{-7} \times 10^{6} = 0.125 \, \text{mm}^2. \]
0.01 mole of an organic compound (X) containing 10% hydrogen, on complete combustion, produced 0.9 g H₂O. Molar mass of (X) is ___________g mol\(^{-1}\).