The elastic potential energy stored in a stretched wire is given by: \[ U = \frac{1}{2} \times \frac{F \Delta L}{A Y}, \] where:
Rearranging the formula for \( A \): \[ A = \frac{F \Delta L}{2 U Y}. \] The force \( F \) is given by: \[ F = Y \times \frac{\Delta L}{L}. \] Substitute \( F \) back into the equation for \( A \): \[ A = \frac{Y \times \frac{\Delta L}{L} \times \Delta L}{2 U Y} = \frac{\Delta L^2}{2 U \times L}. \] Substitute the given values: \[ A = \frac{(0.02)^2}{2 \times 80 \times 20} = \frac{0.0004}{3200}. \] Simplify: \[ A = 1.25 \times 10^{-7} \, \text{m}^2. \] Convert \( \text{m}^2 \) to \( \text{mm}^2 \): \[ A = 1.25 \times 10^{-7} \times 10^{6} = 0.125 \, \text{mm}^2. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: