Question:

Let \(S=\left\{θ∈[0,2π]:8^{2sin^2⁡θ}+8^{2cos^2⁡θ}=16\right\}\) .
Then\(n(S) + \sum_{\theta \in S}\left( \sec\left(\frac{\pi}{4} + 2\theta\right)\cosec\left(\frac{\pi}{4} + 2\theta\right)\right)\)is equal to :

Updated On: Jan 21, 2025
  • 0
  • -2
  • -4
  • 12
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

\(S=\left\{θ∈[0,2π]:8^{2\sin^2⁡θ}+8^{2\cos^2⁡θ}=16\right\}\)
Now apply \(AM≥ GM\ for 8^{2\sin^2⁡θ},8^{2\cos^2⁡θ}\)
\(\frac{8^{2\sin^2⁡θ}+8^{2\cos^2⁡θ}}{2}≥(8^{2\sin^2⁡θ}+2^{\cos^2⁡θ})^{\frac{1}{2}}\)
\(8≥8\)
\(⇒8^{2\sin^2⁡θ}=8^{2\cos^2⁡θ}\)
\(\sin^2θ=\cos^2θ\)
\(∴θ=\frac{π}{4},\frac{3π}{4},\frac{5π}{4},\frac{7π}{4}\)
\(n(S)+\sum_{\theta∈S}\sec⁡(\frac{π}{4}+2θ)\cosec(\frac{π}{4}+2θ)\)
\(4+\sum_{θ∈S} \frac{2}{2\sin⁡(\frac{π}{4}+2θ)\cos⁡(\frac{π}{4}+2θ)}\)
\(=4+\sum_{θ∈S} \frac{2}{\sin⁡(\frac{π}{2}+4θ)}=4+2\sum_{θ∈S}\cosec(\frac{π}{2}+4θ)\)
\(=4+2[\cosec(\frac{π}{2}+π)+\cosec(\frac{π}{2}+3π)+.\cosec(\frac{π}{2}+5π)+\cosec(\frac{π}{2}+7π)]\)
\(=4+2[−\cosec\frac{π}{2}−\cosec\frac{π}{2}−\cosec\frac{π}{2}−\cosec\frac{π}{2}]\)
= 4– 2(4)
= 4 – 8
= – 4
So, the correct option is (C): -4

Was this answer helpful?
22
17

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Trigonometry

Trigonometry is a branch of mathematics focused on the relationships between angles and side lengths of triangles. It explores trigonometric functions, ratios, and identities, essential for solving problems involving triangles. Common functions include sine, cosine, and tangent.

Sine represents the ratio of the opposite side to the hypotenuse, cosine the adjacent side to the hypotenuse, and tangent the opposite side to the adjacent side. Trigonometry finds applications in various fields, including physics, engineering, and navigation. Understanding angles, circular functions, and the trigonometric table is fundamental in mastering this mathematical discipline