Let \(S=\left\{θ∈[0,2π]:8^{2sin^2θ}+8^{2cos^2θ}=16\right\}\) .
Then\(n(S) + \sum_{\theta \in S}\left( \sec\left(\frac{\pi}{4} + 2\theta\right)\cosec\left(\frac{\pi}{4} + 2\theta\right)\right)\)is equal to :
\(S=\left\{θ∈[0,2π]:8^{2\sin^2θ}+8^{2\cos^2θ}=16\right\}\)
Now apply \(AM≥ GM\ for 8^{2\sin^2θ},8^{2\cos^2θ}\)
\(\frac{8^{2\sin^2θ}+8^{2\cos^2θ}}{2}≥(8^{2\sin^2θ}+2^{\cos^2θ})^{\frac{1}{2}}\)
\(8≥8\)
\(⇒8^{2\sin^2θ}=8^{2\cos^2θ}\)
\(\sin^2θ=\cos^2θ\)
\(∴θ=\frac{π}{4},\frac{3π}{4},\frac{5π}{4},\frac{7π}{4}\)
\(n(S)+\sum_{\theta∈S}\sec(\frac{π}{4}+2θ)\cosec(\frac{π}{4}+2θ)\)
\(4+\sum_{θ∈S} \frac{2}{2\sin(\frac{π}{4}+2θ)\cos(\frac{π}{4}+2θ)}\)
\(=4+\sum_{θ∈S} \frac{2}{\sin(\frac{π}{2}+4θ)}=4+2\sum_{θ∈S}\cosec(\frac{π}{2}+4θ)\)
\(=4+2[\cosec(\frac{π}{2}+π)+\cosec(\frac{π}{2}+3π)+.\cosec(\frac{π}{2}+5π)+\cosec(\frac{π}{2}+7π)]\)
\(=4+2[−\cosec\frac{π}{2}−\cosec\frac{π}{2}−\cosec\frac{π}{2}−\cosec\frac{π}{2}]\)
= 4– 2(4)
= 4 – 8
= – 4
So, the correct option is (C): -4
Identify the structure of the final product (D) in the following sequence of the reactions :
Total number of $ sp^2 $ hybridised carbon atoms in product D is _____.
Trigonometry is a branch of mathematics focused on the relationships between angles and side lengths of triangles. It explores trigonometric functions, ratios, and identities, essential for solving problems involving triangles. Common functions include sine, cosine, and tangent.
Sine represents the ratio of the opposite side to the hypotenuse, cosine the adjacent side to the hypotenuse, and tangent the opposite side to the adjacent side. Trigonometry finds applications in various fields, including physics, engineering, and navigation. Understanding angles, circular functions, and the trigonometric table is fundamental in mastering this mathematical discipline