Let p and p + 2 be prime numbers and let
\(Δ=\begin{vmatrix} p! & (p+1)! & (p+2)! \\ (p+1)! & (p+2)! & (p+3)! \\ (p+2)! & (p+3)! & (p+4)! \\ \end{vmatrix}\)
Then the sum of the maximum values of α and β, such that pα and (p + 2)β divide Δ, is _______.
The correct answer is 4
\(Δ=\begin{vmatrix} p! & (p+1)! & (p+2)! \\ (p+1)! & (p+2)! & (p+3)! \\ (p+2)! & (p+3)! & (p+4)! \\ \end{vmatrix}\)
\(=p!(p+1)!⋅(p+2)!\)\(\begin{vmatrix} 1 & p+1 & (p+1)(p+2) \\ 1 & (p+2) & (p+2)(p+3) \\ 1 & (p+3) & (p+3)(p+4) \\ \end{vmatrix}\)
\(=p!(p+1)!⋅(p+2)!\)\(\begin{vmatrix} 1 & p+1 & p^2+3p+2\\ 0 & 1 & 2p+4 \\ 0 & 1 & 2p+6 \\ \end{vmatrix}\)
\(=2(p!)⋅((p+1)!)⋅((p+2)!)\)
\(=2(p+1)⋅(p!)2⋅((p+2)!)\)
\(=2(p+1)2⋅(p!)3⋅((p+2)!)\)
∴ Maximum value of α is 3 and β is 1.
∴ α + β = 4
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.