Let 0.2, 1.2, 1.4, 0.3, 0.9, 0.7 be the observed values of a random sample of size 6 from a continuous distribution with the probability density function
\(f(x) = \begin{cases} 1, & 0< x \le \frac{1}{2} \\ \frac{1}{2\theta-1}, & \frac{1}{2} \lt x \le \theta \\ 0, & \text{otherwise,}\end{cases}\)
where θ > \(\frac{1}{2}\) is unknown. Then the maximum likelihood estimate and the method of moments estimate of θ, respectively, are