The given problem requires us to find the maximum value of the function \(f(x) = \text{det}\begin{pmatrix} 1+x & 9 & 9 \\ 9 & 1+x & 9 \\ 9 & 9 & 1+x \end{pmatrix}\) on the interval \([9, 10]\). To solve this, we need to calculate the determinant of the matrix.
The determinant of a \(3 \times 3\) matrix \(A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}\) is given by:
\(\text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg)\)
For the given matrix:
| \(a = 1+x\) | \(b = 9\) | \(c = 9\) |
| \(d = 9\) | \(e = 1+x\) | \(f = 9\) |
| \(g = 9\) | \(h = 9\) | \(i = 1+x\) |
Substitute these values into the determinant formula:
\(\text{det} = (1+x)((1+x)(1+x) - 9 \cdot 9) - 9(9(1+x) - 9 \cdot 9) + 9(9 \cdot 9 - 9(1+x))\)
Simplifying each term:
Therefore,
\(\text{det} = (1+x)(x^2 + 2x + 1 - 81) - 9(9x + 81 - 81) + 9(81 - 9x)\)
Simplify the expression:
\(= (1+x)(x^2 + 2x - 80) - 81x + 729 - 81x\)
Which results in:
\(f(x) = x^3 + 2x^2 - 80x + x^2 + 2x - 80 - 162x + 729\)
\(= x^3 + 3x^2 - 240x + 729\)
Now, to find the maximum value on the interval \([9, 10]\), evaluate at both endpoints:
Thus, the maximum value of \(f(x)\) on the interval \([9, 10]\) is 116.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is: