Question:

For n = 1, 2, 3, …, let the joint moment generating function of (X, Yn) be
\(M_{X,Y_n}(t_1,t_2)=e^{\frac{t^2_1}{2}(1-2t_2)^{-\frac{n}{2}}}, t_1 \in \R,t_2 \lt \frac{1}{2}.\)
If \(T_n=\frac{\sqrt{n}X}{\sqrt{Y_n}},n \ge1,\) then which one of the following statements is true ?

Updated On: Oct 1, 2024
  • The minimum value of n for which Var(Tn) is finite is 2
  • \(E(T^3_{10})=10\)
  • \(Var(X+Y_4=7)\)
  • \(\lim\limits_{n \rightarrow \infin}P(|T_n|>3)=1-\frac{\sqrt2}{\sqrt{\pi}}\int^3_0e^{-\frac{t^2}{2}}dt\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct option is (D) : \(\lim\limits_{n \rightarrow \infin}P(|T_n|>3)=1-\frac{\sqrt2}{\sqrt{\pi}}\int^3_0e^{-\frac{t^2}{2}}dt\).
Was this answer helpful?
0
0

Questions Asked in IIT JAM MS exam

View More Questions