To solve this problem, we need to find the Maximum Likelihood Estimate (MLE) and the Method of Moments Estimate (MME) for the parameter \(\theta\) given a sample and the probability density function (PDF) of the form:
\(f(x) = \begin{cases} 1, & 0< x \le \frac{1}{2} \\ \frac{1}{2\theta-1}, & \frac{1}{2} \lt x \le \theta \\ 0, & \text{otherwise} \end{cases}\)
Thus, the Maximum Likelihood Estimate and Method of Moments Estimate for \(\theta\) are \( \frac{7}{5} \) and \(\frac{32}{15}\), respectively.
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).