To solve the problem, we need to evaluate the limit:
\[ \lim_{x \to 0} \frac{e^{ax} - e^{bx}}{2x} \]
1. Expand the Exponential Functions:
Using the Taylor series expansion for exponential functions:
\[
e^{ax} = 1 + ax + \frac{(ax)^2}{2!} + \frac{(ax)^3}{3!} + \cdots
\]
\[
e^{bx} = 1 + bx + \frac{(bx)^2}{2!} + \frac{(bx)^3}{3!} + \cdots
\]
2. Substitute the Expansions:
Substitute these expansions into the original limit expression:
\[
\lim_{x \to 0} \frac{\left( 1 + ax + \frac{(ax)^2}{2!} + \cdots \right) - \left( 1 + bx + \frac{(bx)^2}{2!} + \cdots \right)}{2x}
\]
3. Simplify the Numerator:
Combine like terms in the numerator:
\[
\lim_{x \to 0} \frac{x \left[ (a - b) + x\left( \frac{a^2}{2!} - \frac{b^2}{2!} \right) + x^2\left( \frac{a^3}{3!} - \frac{b^3}{3!} \right) + \cdots \right]}{2x}
\]
4. Cancel the Common Factor:
Cancel \( x \) from numerator and denominator:
\[
\lim_{x \to 0} \frac{1}{2} \left[ (a - b) + x\left( \frac{a^2 - b^2}{2} \right) + x^2\left( \frac{a^3 - b^3}{6} \right) + \cdots \right]
\]
5. Evaluate the Limit:
As \( x \to 0 \), all terms containing \( x \) vanish, leaving:
\[
\frac{a - b}{2}
\]
Final Answer:
The value of the limit is \( \boxed{\dfrac{a - b}{2}} \).
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to
A solid cylinder of mass 2 kg and radius 0.2 m is rotating about its own axis without friction with angular velocity 5 rad/s. A particle of mass 1 kg moving with a velocity of 5 m/s strikes the cylinder and sticks to it as shown in figure. 
The angular velocity of the system after the particle sticks to it will be: