We are given the matrix \( A = \begin{bmatrix} 2 - k & 2 \\ 1 & 3 - k \end{bmatrix} \), and we need to find the value of \( 5k - k^2 \) when this matrix is singular.
In both cases, \( 5k - k^2 = 4 \). Therefore, the value of \( 5k - k^2 \) is \( \boxed{4} \).
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The difference in energy levels of an electron at two excited levels is 13.75 eV. If it makes a transition from the higher energy level to the lower energy level then what will be the wavelength of the emitted radiation?
Given:
$ h = 6.6 \times 10^{-34} \, \text{m}^2 \, \text{kg} \, \text{s}^{-1} $, $ c = 3 \times 10^8 \, \text{ms}^{-1} $, $ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} $