We are given the matrix \( A = \begin{bmatrix} 2 - k & 2 \\ 1 & 3 - k \end{bmatrix} \), and we need to find the value of \( 5k - k^2 \) when this matrix is singular.
Step 1: Condition for a matrix to be singular
A matrix is singular if and only if its determinant is zero. Therefore, we first need to find the determinant of matrix \( A \).
The determinant of a 2x2 matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by:
\[
\det(A) = ad - bc
\]
For the matrix \( A = \begin{bmatrix} 2 - k & 2 \\ 1 & 3 - k \end{bmatrix} \), we have:
- \( a = 2 - k \)
- \( b = 2 \)
- \( c = 1 \)
- \( d = 3 - k \)
The determinant of \( A \) is:
\[
\det(A) = (2 - k)(3 - k) - (2)(1)
\]
Step 2: Simplify the determinant expression
First, expand the terms:
\[
\det(A) = (2 - k)(3 - k) - 2
\]
Expanding \( (2 - k)(3 - k) \):
\[
(2 - k)(3 - k) = 6 - 2k - 3k + k^2 = 6 - 5k + k^2
\]
So, the determinant becomes:
\[
\det(A) = 6 - 5k + k^2 - 2 = k^2 - 5k + 4
\]
Step 3: Set the determinant equal to zero
For the matrix to be singular, the determinant must be zero:
\[
k^2 - 5k + 4 = 0
\]
Step 4: Solve the quadratic equation
We can solve this quadratic equation using the quadratic formula:
\[
k = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(4)}}{2(1)}
\]
Simplifying:
\[
k = \frac{5 \pm \sqrt{25 - 16}}{2} = \frac{5 \pm \sqrt{9}}{2} = \frac{5 \pm 3}{2}
\]
This gives two possible solutions for \( k \):
\[
k = \frac{5 + 3}{2} = 4 \quad \text{or} \quad k = \frac{5 - 3}{2} = 1
\]
Step 5: Calculate \( 5k - k^2 \)
We now calculate \( 5k - k^2 \) for both values of \( k \):
- For \( k = 4 \):
\[
5k - k^2 = 5(4) - (4)^2 = 20 - 16 = 4
\]
- For \( k = 1 \):
\[
5k - k^2 = 5(1) - (1)^2 = 5 - 1 = 4
\]
Final Answer:
In both cases, \( 5k - k^2 = 4 \). Therefore, the value of \( 5k - k^2 \) is \( \boxed{4} \).