Five charges, 'q' each are placed at the corners of a regular pentagon of side 'a' as shown in figure. First, charge from 'A' is removed with other charges intact, then charge at 'A' is replaced with an equal opposite charge. The ratio of magnitudes of electric fields at O, without charge at A and that with equal and opposite charge at A is
Two point charges M and N having charges +q and -q respectively are placed at a distance apart. Force acting between them is F. If 30% of charge of N is transferred to M, then the force between the charges becomes:
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be:
Two charges $ -q $ each are fixed, separated by distance $ 2d $. A third charge $ q $ of mass $ m $ placed at the mid-point is displaced slightly by $ x' (x \ll d) $ perpendicular to the line joining the two fixed charges as shown in the figure. The time period of oscillation of $ q $ will be:
If potential (in volt) in a region is expressed as $ V(x, y, z) = 6xy - y + 2yz $, the electric field (in} $ \text{N/C} $ at point (1, 0, 1) is: