We will evaluate each term separately.
\[
\cot^{-1} \left( -\frac{3}{\sqrt{3}} \right) = \cot^{-1} \left( -\sqrt{3} \right)
\]
We know that \( \cot^{-1} \left( -\sqrt{3} \right) \) corresponds to an angle of \( \frac{2\pi}{3} \).
Next,
\[
\sec^{-1} \left( -\frac{2}{\sqrt{2}} \right) = \sec^{-1} \left( -\sqrt{2} \right)
\]
Since \( \sec^{-1} \left( -\sqrt{2} \right) \) corresponds to an angle of \( \frac{3\pi}{4} \).
Next,
\[
\csc^{-1}(-1) = \frac{3\pi}{2}
\]
because the cosecant function is \( -1 \) at this angle.
Finally,
\[
\tan^{-1}(1) = \frac{\pi}{4}
\]
since the tangent of \( 45^\circ \) or \( \frac{\pi}{4} \) is 1.
Now, putting everything together:
\[
\frac{2\pi}{3} - \frac{3\pi}{4} - \frac{3\pi}{2} - \frac{\pi}{4}
\]
We simplify and get:
\[
\frac{2\pi}{3} - \frac{3\pi}{4} - \frac{3\pi}{2} - \frac{\pi}{4} = \frac{\pi}{3}
\]
Thus, the correct answer is \( \frac{\pi}{3} \).