To find the new coordinates after rotating the point \( B(3, 1) \) about the point \( A(2, 0) \) by an angle \( \theta = 15^\circ \), we use the rotation formula:
\[
x' = x_0 + (x - x_0) \cos \theta - (y - y_0) \sin \theta
\]
\[
y' = y_0 + (x - x_0) \sin \theta + (y - y_0) \cos \theta
\]
Here, \( A(2, 0) \) is the center of rotation and \( B(3, 1) \) is the point being rotated. We first compute the differences \( x - x_0 \) and \( y - y_0 \):
\[
x - x_0 = 3 - 2 = 1 \quad \text{and} \quad y - y_0 = 1 - 0 = 1
\]
Now, substituting into the rotation formula for \( \theta = 15^\circ \):
\[
x' = 2 + (1) \cos 15^\circ - (1) \sin 15^\circ = 2 + \frac{1}{\sqrt{2}} = 2 + \frac{1}{\sqrt{3}}
\]
\[
y' = 0 + (1) \sin 15^\circ + (1) \cos 15^\circ = \sqrt{3}
\]
Thus, the coordinates of \( C \) are:
\[
C = \left( 2 + \frac{1}{\sqrt{2}}, \sqrt{3} \right)
\]