Solve system of linear equations, using matrix method.x-y+z=42x+y-3z=0 x+y+z=2
Solve system of linear equations, using matrix method.2x+y+z=1x-2y-z=\(\frac{3}{2}\)3y-5z=9
Solve system of linear equations, using matrix method.4x-3y=33x-5y=7
Solve system of linear equations, using matrix method. 2x-y=-2 3x+4y=3
Solve system of linear equations, using matrix method. 5x+2y=4, 7x+3y=5
Examine the consistency of the system of equations. 5x−y+4z=5, 2x+3y+5z=2, 5x−2y+6z=−1
Examine the consistency of the system of equations. 3x-y−2z=2, 2y−z=−1 3x−5y=3
Examine the consistency of the system of equations.x+y+z=12x+3y+2z=2,ax+ay+2az=4
Examine the consistency of the system of equations.x+3y=5,2x+6y=8
If \(A = \begin{bmatrix} \frac{2}{3} & 1 & \frac 53 \\[0.3em] \frac{1}{3} & \frac 23 & \frac{4}{3} \\[0.3em] \frac 73 & 2 & \frac{2}{3} \end{bmatrix}\) and \(B = \begin{bmatrix} \frac{2}{5} & \frac 35 & 1 \\[0.3em] \frac{1}{5} & \frac 25 & \frac{4}{5} \\[0.3em] \frac 75 & \frac 65 & \frac{2}{5} \end{bmatrix}\) then compute 3A-5B.
Examine the consistency of the system of equations.2x-y=5,x+y=4
Examine the consistency of the system of equations. x+2y=2,2x+3y=3
Let A be a nonsingular square matrix of order 3×3.Then IadjAI is equal to
For the matrix A=\(\begin{bmatrix}3&2\\1&1\end{bmatrix}\),find the numbers a and b such that A2+ aA+bI=O.
Let A=\(\begin{bmatrix}3&7\\2&5\end{bmatrix}\)and B=\(\begin{bmatrix}6&8\\7&9\end{bmatrix}\),Verify that (AB)-1=B-1A-1.
Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&-1&2\\0&2&-3\\3&-2&4\end{bmatrix}\)
Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}2&1&3\\4&-1&0\\-7&2&1\end{bmatrix}\)
Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}-1&5\\-3&2\end{bmatrix}\)
Find the inverse of each of the matrices (if it exists). \(\begin{bmatrix}1&0&0\\3&3&0\\5&2&-1\end{bmatrix}\)
Find adjoint of each of the matrices. \(\begin{bmatrix}1&2\\3&4\end{bmatrix}\)
For the matrices A and B, verify that (AB)′=B'A' whereI. A=\(\begin{bmatrix}1\\-4\\3\end{bmatrix}\),B=\(\begin{bmatrix}-1&2&1\end{bmatrix}\)
II. A= \(\begin{bmatrix}0\\1\\2\end{bmatrix}\),B=\(\begin{bmatrix}1&5&7\end{bmatrix}\)
Using Cofactors of elements of second row, evaluate △=\(\begin{vmatrix}5&3&8\\2&0&1\\1&2&3\end{vmatrix}\)
Consider f: R+\(\to\) [−5,∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with \(f^{-1}(y) = \frac {(\sqrt {y+6})-1}{3}\)
Consider f: {1, 2, 3} \(\to\) {a, b, c} given by f(1) = a, f(2) = b and f(3) = c. Find f−1 and show that (f−1)−1= f.