Step 1: Use the property of direction cosines.
For a line in 3D space, the direction cosines \( l, m, n \) satisfy the equation:
\[
l^2 + m^2 + n^2 = 1
\]
Step 2: Substitute the given values.
Given \( l = \sqrt{3}k \), \( m = \sqrt{3}k \), \( n = \sqrt{3}k \), the equation becomes:
\[
(\sqrt{3}k)^2 + (\sqrt{3}k)^2 + (\sqrt{3}k)^2 = 1
\]
Step 3: Simplify the equation.
\[
3k^2 + 3k^2 + 3k^2 = 1
\]
\[
9k^2 = 1
\]
\[
k^2 = \frac{1}{9}
\]
Step 4: Find the value of \( k \).
\[
k = \pm \frac{1}{3}
\]
Final Answer:
\[
\boxed{\pm \frac{1}{3}}
\]