Differentiate the given equation implicitly with respect to \( x \):
\[
\frac{d}{dx} \left( x^{1/3} + y^{1/3} \right) = \frac{d}{dx}(1).
\]
Using the chain rule:
\[
\frac{1}{3}x^{-2/3} + \frac{1}{3}y^{-2/3} \frac{dy}{dx} = 0.
\]
Rearrange to solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = -\frac{x^{-2/3}}{y^{-2/3}}.
\]
Substitute \( x = \frac{1}{8} \) and \( y = \frac{1}{8} \):
\[
x^{-2/3} = \left( \frac{1}{8} \right)^{-2/3} = \left( 8 \right)^{2/3} = 4, \quad y^{-2/3} = \left( \frac{1}{8} \right)^{-2/3} = \left( 8 \right)^{2/3} = 4.
\]
\[
\frac{dy}{dx} = -\frac{4}{4} = -1.
\]
Final Answer:
\[
\boxed{-1}
\]