Let \( I = \int_0^{\frac{\pi^2}{4}} \frac{\sin\sqrt{x}}{\sqrt{x}} \, dx \).
Using substitution, let \( t = \sqrt{x} \). Then,
\[
x = t^2, \quad dx = 2t \, dt, \quad \sqrt{x} = t.
\]
Substitute into the integral:
\[
I = \int_0^{\frac{\pi}{2}} \frac{\sin t}{t} \cdot 2t \, dt = 2 \int_0^{\frac{\pi}{2}} \sin t \, dt.
\]
Simplify:
\[
I = 2 \left[ -\cos t \right]_0^{\frac{\pi}{2}}.
\]
Evaluate:
\[
I = 2 \left[ -\cos\left(\frac{\pi}{2}\right) + \cos(0) \right] = 2 \left[ 0 + 1 \right] = 2.
\]
Final Answer:
\[
\boxed{\int_0^{\frac{\pi^2}{4}} \frac{\sin\sqrt{x}}{\sqrt{x}} \, dx = 2.}
\]