Step 1: Rewrite the given differential equation.
The given equation is:
\[
\frac{dy}{dx} = \frac{1}{\log y}
\]
Rewriting, we obtain:
\[
\log y \, dy = dx
\]
Step 2: Integrate both sides.
\[
\int \log y \, dy = \int dx
\]
Using integration by parts for \( \int \log y \, dy \), let \( u = \log y \) and \( dv = dy \), so:
\[
\int \log y \, dy = y \log y - \int y \, dy = y \log y - y + C_1
\]
Step 3: Substituting the integration result.
\[
y \log y - y = x + C_1
\]
Letting \( C = C_1 \), the final solution becomes:
\[
y \log y - y = x + C
\]
Final Answer:
\[
\boxed{y \log y - y = x + c}
\]