Out of the first 5 consecutive natural numbers, if two different numbers x and y are chosen at random, then the probability that x4- y4 is divisible by 5 is:
Point (-1, 2) is changed to (a, b) when the origin is shifted to the point (2, -1) by translation of axes. Point (a, b) is changed to (c, d) when the axes are rotated through an angle of 45$^{\circ}$ about the new origin. (c, d) is changed to (e, f) when (c, d) is reflected through y = x. Then (e, f) = ?
The area (in square units) of the triangle formed by the lines 6x2 + 13xy + 6y2 = 0 and x + 2y + 3 = 0 is:
Let P be any point on the circle x2 + y2 = 25. Let L be the chord of contact of P with respect to the circle x^2 + y^2 = 9. The locus of the poles of the lines L with respect to the circle x2 + y2 = 36 is:
If the area of the circum-circle of the triangle formed by the line 2x + 5y + a = 0 and the positive coordinate axes is \(\frac{29\pi}{4}\) sq. units, then |a| =
The circle S = x2 + y2 − 2x − 4y + 1 = 0 cuts the y-axis at A, B (OA: OB). If the radical axis of S ≡ 0 and S′ = x2 + y2 − 4x − 2y + 4 = 0 cuts the y-axis at C, then the ratio in which C divides AB is:
If the circle S = 0 cuts the circles x2 + y2 - 2x + 6y = 0, x2 + y2 - 4x - 2y + 6 = 0, and x2 + y2 - 12x + 2y + 3 = 0 orthogonally, then the equation of the tangent at (0, 3) on S = 0 is:
If a tangent of slope 2 to the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) touches the circle \(x^2 + y^2 = 4\), then the maximum value of ab is:
If \( f(x) \) is given as: \( f(x) = \begin{cases} 3ax - 2b, & x<1 ax + b + 1, & x<1 \end{cases} \) and \( \lim_{x \to 1} f(x) \) exists, then the relation between \( a \) and \( b \) is:
.The function \( f(x) \) is given by: \[ f(x) = \begin{cases} \frac{2}{5 - x}, & x<3 \\ 5 - x, & x \geq 3 \end{cases} \] Which of the following is true
If \[ f(x) = \begin{cases} x^\alpha \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases} \] Which of the following is true?
If the equation of the tangent at (2, 3) on y2 = ax3 + b is y = 4x - 5, then the value of a2 + b2 is:
If Rolle's theorem is applicable for the function \(f(x) = x(x+3)e^{-x/2}\) on \([-3, 0]\), then the value of \(c\) is:
For all x ∈ [0, 2024] assume that f (x) is differentiable. f (0) = −2 and f ′(x) ≥ 5. Then the least possible value of f (2024) is: