Evaluate the following determinant: \( \begin{vmatrix} 1 & 1 & 1 \\ a^2 & {b^2} & {c^2} \\ {a^3} & {b^3} & {c^3} \\ \end{vmatrix} \)
The value of \( \cosh \left( \sin^{-1} \left( \sqrt{8} \right) + \cosh^{-1} 5 \right) \) is:
If \( L, M, N \) are the midpoints of the sides PQ, QR, and RP of triangle \( \Delta PQR \), then \( \overline{QM} + \overline{LN} + \overline{ML} + \overline{RN} - \overline{MN} - \overline{QL} = \):
Let a and b be two non-collinear vectors of unit modulus. If u = a − (a · b)b and v = a × b, then ∥v∥ = ?
Find the shortest distance between the skew lines $\vec{r} = (-\hat{i} - 2\hat{j} - 3\hat{k}) + t(3\hat{i} - 2\hat{j} - 2\hat{k})$ and $\vec{r} = (7\hat{i} + 4\hat{k}) + s(\hat{i} - 2\hat{j} + 2\hat{k})$.