If f(x) = ex, h(x) = (fof) (x), then \(\frac{h'(x)}{h'(x)}\) =
If (h,k) is the image of the point (3,4) with respect to the line 2x - 3y -5 = 0 and (l,m) is the foot of the perpendicular from (h,k) on the line 3x + 2y + 12 = 0, then lh + mk + 1 = 2x - 3y - 5 = 0.
If nCr denotes the number of combinations of n distinct things taken r at a time, then the domain of the function g (x)= (16-x)C(2x-1) is
If the roots of the equation z2 - i = 0 are α and β, then | Arg β - Arg α | =
The quadratic equation whose roots are sin218° and cos2 36° is
The roots of the equation x4 + x3 - 4x2 + x + 1 = 0 are diminished by h so that the transformed equation does not contain x2 term. If the values of such h are α and β, then 12(α - β)2 =
The locus of z such that \(\frac{|z-i|}{|z+i|}\)= 2, where z = x+iy. is
If Xn = cos \(\frac{ π}{2^n}\) + i sin\(\frac{ π}{2^n}\) , then
Let y = t2 - 4t -10 and ax + by + c = 0 be the equation of the normal L. If G.C.D of (a,b,c) is 1, then m(a+b+c) =
If the function f(x) = xe -x , x ∈ R attains its maximum value β at x = α then (α, β) =
The number of diagonals of a polygon is 35. If A, B are two distinct vertices of this polygon, then the number of all those triangles formed by joining three vertices of the polygon having AB as one of its sides is:
The orthocenter of the triangle whose sides are given by x + y + 10 = 0, x - y - 2 = 0 and 2x + y - 7 = 0 is
For l ∈ R, the equation (2l - 3) x2 + 2lxy - y2 = 0 represents a pair of distinct lines
If a point P moves so that the distance from (0,2) to P is \(\frac{1}{√2 }\) times the distance of P from (-1,0), then the locus of the point P is
Let d be the distance between the parallel lines 3x - 2y + 5 = 0 and 3x - 2y + 5 + 2√13 = 0. Let L1 = 3x - 2y + k1 = 0 (k1 > 0) and L2 = 3x - 2y + k2 = 0 (k2 > 0) be two lines that are at the distance of \(\frac{4d}{√13}\) and \(\frac{3d}{√13}\) from the line 3x - 2y + 5y = 0. Then the combined equation of the lines L1 = 0 and L2 = 0 is:
A straight line parallel to the line y = √3 x passes through Q(2,3) and cuts the line 2x + 4y - 27 = 0 at P. Then the length of the line segment PQ is
If the parametric equations of the circle passing through the points (3,4), (3,2) and (1,4) is x = a + r cosθ, y = b + r sinθ then ba ra =
If f(x) is a function such that f(x+y) = f(x)+ f(y) and f(1) = 7 then \( \sum_{r=1}^{n}\) f(r) =
There are 10 points in a plane, of which no three points are colinear expect 4. Then the number of distinct triangles that can be formed by joining any three points of these ten points, such that at least one of the vertices of every triangle formed is from the given 4 colinear points is
A student is asked to answer 10 out of 13 questions in an examination such that he must answer at least four questions from the first five questions. Then the total number of possible choices available to him is
If A is a square matrix of order 3, then |Adj(Adj A2)| =
If ∫ \(\frac{x^{49} Tan^{-1} (x^{50})}{(1+x^{100})}\)dx = k(Tan-1 (x50))2 + c, then k =
If R -(α,β) is the range of \(\frac{x+3}{(x-1)(x+2)}\) then the sum of the intercepts of the line ax + βy + 1 = 0 on the coordinate axes is:
If ∫(log x)3 x5 dx = \(\frac{x^6}{A}\) [B(log x)3 + C(logx)2 + D(log x) - 1] + k and A,B,C,D are integers, then A - (B+C+D) =