Question:

If $ i = \sqrt{-1} $ then  $\text{Arg}\left[ \frac{(1+i)^{2025}}{1+i^{2022}} \right]=$

Updated On: Apr 22, 2025
  • \(\frac{-π}{4}\)

  • \(\frac{π}{4}\)

  • \(\frac{3π}{4}\)

  • \(\frac{-3π}{4}\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

To solve the problem, we need to evaluate the argument (principal value) of the complex expression:

$\text{Arg}\left(\frac{(1+i)^{2025}}{(1-i)^{2022}}\right)$

1. Expressing Complex Numbers in Polar Form:
We know:
$1+i = \sqrt{2} \text{cis}\left(\frac{\pi}{4}\right)$
$1-i = \sqrt{2} \text{cis}\left(-\frac{\pi}{4}\right)$

2. Apply Exponent Rules:
Using the property: $(r \text{cis} \theta)^n = r^n \text{cis}(n\theta)$
So, $(1+i)^{2025} = (\sqrt{2})^{2025} \text{cis}\left(\frac{2025\pi}{4}\right)$
$(1-i)^{2022} = (\sqrt{2})^{2022} \text{cis}\left(-\frac{2022\pi}{4}\right)$

3. Divide the Expressions:
$\frac{(1+i)^{2025}}{(1-i)^{2022}} = \frac{(\sqrt{2})^{2025}}{(\sqrt{2})^{2022}} \cdot \text{cis}\left(\frac{2025\pi}{4} + \frac{2022\pi}{4}\right)$
= $(\sqrt{2})^3 \cdot \text{cis}\left(\frac{4047\pi}{4}\right)$

4. Compute the Argument:
We only need the angle (argument) part: $\text{Arg} = \frac{4047\pi}{4}$
Now reduce the angle to its principal value in $(-\pi, \pi]$.

Divide $4047$ by $8$: $4047 \div 8 = 505$ remainder $7$
So, $ \frac{4047\pi}{4} = \frac{8 \cdot 505 + 7}{4} \pi = 505 \cdot 2\pi + \frac{7\pi}{4}$

Since $2\pi$ is a full rotation, the angle reduces to $\frac{7\pi}{4}$
But $\frac{7\pi}{4}$ lies in the 4th quadrant, and we must bring it into $(-\pi, \pi]$ range.

$ \frac{7\pi}{4} - 2\pi = \frac{7\pi - 8\pi}{4} = -\frac{\pi}{4}$

Final Answer:
The value of the argument is $ { -\frac{\pi}{4} } $

Was this answer helpful?
41
58

Concepts Used:

Trigonometric Identities

Various trigonometric identities are as follows:

Even and Odd Functions

Cosecant and Secant are even functions, all the others are odd.

  • sin (-A) = – sinA,
  • cos (-A) = cos A,
  • cosec (-A) = -cosec A,
  • cot (-A) = -cot A,
  • tan (-A) = – tan A,
  • sec (-A) = sec A.

Pythagorean Identities

  1. sin2θ + cos2θ = 1
  2. 1 + tan2θ = sec2θ
  3. 1 + cot2θ = cosec2θ

Periodic Functions

  1. T-Ratios of (2π + x)
    sin (2π + x) = sin x,
    cos (2π + x) = cos x,
    tan (2π + x) = tan x,
    cosec (2π + x) = cosec x,
    sec (2π + x) = sec x,
    cot (2π+x)=cotx.
  2. T-Ratios of (π -x)
    sin (π–x) = sin x,
    cos (π–x) = - cos x,
    tan (π–x) = - tan x,
    cosec (π–x) = cosec x,
    sec (π–x) = - sec x,
    cot (π–x) = - cot x.
  3. T-Ratios of (π+ x)
    sin (π+x) = - sin x,
    cos (π+x) = - cos x,
    tan (π+x) = tan x,
    cosec (π+x) = - cosec x,
    sec (π+x) = - sec x,
    cot (π+x) = cot x.
  4. T-Ratios of (2π – x)
    sin (2π–x) = - sin x,
    cos (2n–x) = cos x,
    tan (2π–x) = - tan x,
    cosec (2π–x) = - cosec x,
    sec (2π–x) = sec x,
    cot (2π-x) = - cot x

Sum and Difference Identities

  1. T-Ratios of (x + y)
    sin (x+y) = sinx.cosy + cosx.sin y
    cos (x+y) = cosx.cosy – sinx.siny
  2. T-Ratios of (x – y)
    sin (x–y) = sinx.cosy – cos.x.sin y
    cos (x-y) = cosx.cosy + sinx.siny

Product of T-ratios

  • 2sinx cosy = sin(x+y) + sin(x–y)
  • 2cosx siny = sin(x+y) – sin(x–y)
  • 2 cosx cosy = cos(x+y) + cos(x–y)
  • 2sinx.siny = cos(x–y) – cos(x+y)

T-Ratios of (2x)
sin2x = 2sin x cos x
cos 2x = cos2x – sin2

= 2cos2x – 1 

= 1 – 2sin2x

T-Ratios of (3x)
sin 3x = 3sinx – 4sin3x
cos 3x = 4cos3x – 3cosx