\(∫\frac{dx}{(x2+1) (x2+4)} =\)
\(\frac{1}{3}Tan^{-1}x +\frac{1}{6}Tan^{-1}(\frac{x}{2})+c\)
\(\frac{1}{3}Tan^{-1}x -\frac{1}{3}Tan^{-1}(\frac{x}{2})+c\)
\(\frac{1}{3}Tan^{-1}x +\frac{1}{3}Tan^{-1}(\frac{x}{2})+c\)
\(\frac{1}{3}Tan^{-1}x -\frac{1}{6}Tan^{-1}(\frac{x}{2})+c\)
To solve the problem, we need to evaluate the integral $I = \int \frac{dx}{(x^2 + 1)(x^2 + 4)}$.
1. Decompose the Integrand:
Write $\frac{1}{(x^2 + 1)(x^2 + 4)} = \frac{A}{x^2 + 1} + \frac{B}{x^2 + 4}$.
Multiply through by $(x^2 + 1)(x^2 + 4)$:
$1 = A(x^2 + 4) + B(x^2 + 1) = (A + B)x^2 + (4A + B)$.
Equate coefficients:
$A + B = 0$, $4A + B = 1$.
2. Solve for Coefficients:
Subtract $A + B = 0$ from $4A + B = 1$:
$3A = 1$, so $A = \frac{1}{3}$.
Then $B = -A = -\frac{1}{3}$.
3. Rewrite the Integral:
Substitute back:
$I = \int \left( \frac{\frac{1}{3}}{x^2 + 1} - \frac{\frac{1}{3}}{x^2 + 4} \right) dx = \frac{1}{3} \int \frac{dx}{x^2 + 1} - \frac{1}{3} \int \frac{dx}{x^2 + 4}$.
4. Evaluate the Integrals:
The first integral is:
$\int \frac{dx}{x^2 + 1} = \arctan x$.
The second integral is:
$\int \frac{dx}{x^2 + 4} = \int \frac{dx}{x^2 + 2^2} = \frac{1}{2} \arctan \frac{x}{2}$.
Thus:
$I = \frac{1}{3} \arctan x - \frac{1}{3} \cdot \frac{1}{2} \arctan \frac{x}{2} + C = \frac{1}{3} \arctan x - \frac{1}{6} \arctan \frac{x}{2} + C$.
Final Answer:
The integral is $\frac{1}{3} \arctan x - \frac{1}{6} \arctan \frac{x}{2} + C$.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The following graph indicates the system containing 1 mole of gas involving various steps. When it moves from Z to X, the type of undergoing process is:
A differential equation is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.
The first-order differential equation has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y’
The equation which includes second-order derivative is the second-order differential equation. It is represented as; d/dx(dy/dx) = d2y/dx2 = f”(x) = y”.
Differential equations can be divided into several types namely