If n is a positive integer and f(n) is the coeffcient of xn in the expansion of (1 + x)(1-x)n, then f(2023) =
-2021
2022
2023
-2023
We are given that $f(n)$ is the coefficient of $x^n$ in the expansion of $(1+x)(1-x)^n$.
We want to find $f(2023)$.
Let $(1+x)(1-x)^n = \sum_{k=0}^{n+1} a_k x^k$. Then $f(n) = a_n$.
Expanding $(1+x)(1-x)^n$, we have:
$(1+x)(1-x)^n = (1-x)^n + x(1-x)^n = \sum_{k=0}^n \binom{n}{k} (-x)^k + x \sum_{k=0}^n \binom{n}{k} (-x)^k$
$= \sum_{k=0}^n \binom{n}{k} (-1)^k x^k + \sum_{k=0}^n \binom{n}{k} (-1)^k x^{k+1}$
The coefficient of $x^n$ in the expansion is:
$\binom{n}{n} (-1)^n + \binom{n}{n-1} (-1)^{n-1}$
Thus, $f(n)$ can be expressed as:
$f(n) = (-1)^n + n (-1)^{n-1} = (-1)^n + (-1)^{n-1} n$
$f(n) = (-1)^n - n (-1)^n = (-1)^n (1 - n)$
Substituting $n = 2023$, we get:
$f(2023) = (-1)^{2023} (1 - 2023) = -1 (-2022) = 2022$.
Final Answer:
The final answer is ${2022}$.
Match the following:
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is