If n is a positive integer and f(n) is the coeffcient of xn in the expansion of (1 + x)(1-x)n, then f(2023) =
-2021
2022
2023
-2023
We are given that $f(n)$ is the coefficient of $x^n$ in the expansion of $(1+x)(1-x)^n$.
We want to find $f(2023)$.
Let $(1+x)(1-x)^n = \sum_{k=0}^{n+1} a_k x^k$. Then $f(n) = a_n$.
Expanding $(1+x)(1-x)^n$, we have:
$(1+x)(1-x)^n = (1-x)^n + x(1-x)^n = \sum_{k=0}^n \binom{n}{k} (-x)^k + x \sum_{k=0}^n \binom{n}{k} (-x)^k$
$= \sum_{k=0}^n \binom{n}{k} (-1)^k x^k + \sum_{k=0}^n \binom{n}{k} (-1)^k x^{k+1}$
The coefficient of $x^n$ in the expansion is:
$\binom{n}{n} (-1)^n + \binom{n}{n-1} (-1)^{n-1}$
Thus, $f(n)$ can be expressed as:
$f(n) = (-1)^n + n (-1)^{n-1} = (-1)^n + (-1)^{n-1} n$
$f(n) = (-1)^n - n (-1)^n = (-1)^n (1 - n)$
Substituting $n = 2023$, we get:
$f(2023) = (-1)^{2023} (1 - 2023) = -1 (-2022) = 2022$.
Final Answer:
The final answer is ${2022}$.
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
