is \(\frac{a_1+a_2+....+a_n}{n}\)
Given:
\[ \lim_{x \rightarrow \infty} \left( x - \sqrt[x]{(x - a_1)(x - a_2) \ldots (x - a_n)} \right) \]
As \( x \to \infty \), each \( x - a_i \approx x \), so:
\[ (x - a_1)(x - a_2) \ldots (x - a_n) \approx x^n \left( 1 - \frac{a_1}{x} \right)\left( 1 - \frac{a_2}{x} \right) \ldots \left( 1 - \frac{a_n}{x} \right) \]
So we get:
\[ \sqrt[x]{(x - a_1)\ldots(x - a_n)} \approx x \cdot \sqrt[x]{\left( 1 - \frac{a_1}{x} \right) \ldots \left( 1 - \frac{a_n}{x} \right)} \]
Now using the approximation:
\[ \sqrt[x]{\left( 1 - \frac{a_1}{x} \right) \ldots \left( 1 - \frac{a_n}{x} \right)} \approx 1 - \frac{a_1 + a_2 + \ldots + a_n}{x} \]
So:
\[ x - \sqrt[x]{(x - a_1)\ldots(x - a_n)} \approx x - x \left( 1 - \frac{a_1 + a_2 + \ldots + a_n}{x} \right) = \frac{a_1 + a_2 + \ldots + a_n}{n} \]
Final Answer: Option (B): \( \frac{a_1 + a_2 + \ldots + a_n}{n} \)
We want to find the limit:
\(\lim_{x \to \infty} \left\{ x - \sqrt[n]{(x-a_1)(x-a_2) \cdots (x-a_n)} \right\}\)
where \(a_1, a_2, \dots, a_n\) are positive rational numbers.
Let's rewrite the expression inside the limit:
\(x - \sqrt[n]{(x-a_1)(x-a_2) \cdots (x-a_n)} = x - \sqrt[n]{x^n - (a_1 + a_2 + \dots + a_n)x^{n-1} + \cdots + (-1)^n a_1 a_2 \dots a_n}\)
Let \(S = a_1 + a_2 + \dots + a_n\). Then the expression inside the root can be written as:
\(x^n - Sx^{n-1} + O(x^{n-2})\)
Let's factor out \(x^n\) from the root:
\(x - \sqrt[n]{x^n \left( 1 - \frac{S}{x} + O\left(\frac{1}{x^2}\right) \right)}\)
\(x - x \sqrt[n]{1 - \frac{S}{x} + O\left(\frac{1}{x^2}\right)}\)
Now we can use the binomial approximation: \((1+y)^k \approx 1 + ky\) for small y.
In our case, \(y = -\frac{S}{x} + O\left(\frac{1}{x^2}\right)\) and \(k = \frac{1}{n}\).
\(x - x \left( 1 + \frac{1}{n} \left( -\frac{S}{x} + O\left(\frac{1}{x^2}\right) \right) + O\left(\frac{1}{x^2}\right) \right)\)
\(x - x \left( 1 - \frac{S}{nx} + O\left(\frac{1}{x^2}\right) \right)\)
\(x - x + \frac{S}{n} + O\left(\frac{1}{x}\right)\)
\(\frac{S}{n} + O\left(\frac{1}{x}\right)\)
As \(x \to \infty\), the term \(O\left(\frac{1}{x}\right)\) goes to 0. So, we have:
\(\lim_{x \to \infty} \left\{ x - \sqrt[n]{(x-a_1)(x-a_2) \cdots (x-a_n)} \right\} = \frac{S}{n} = \frac{a_1 + a_2 + \dots + a_n}{n}\)
Conclusion:
The limit is \(\frac{a_1 + a_2 + \dots + a_n}{n}\)
A function's limit is a number that a function reaches when its independent variable comes to a certain value. The value (say a) to which the function f(x) approaches casually as the independent variable x approaches casually a given value "A" denoted as f(x) = A.
If limx→a- f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the left of ‘a’. This value is also called the left-hand limit of ‘f’ at a.
If limx→a+ f(x) is the expected value of f when x = a, given the values of ‘f’ near x to the right of ‘a’. This value is also called the right-hand limit of f(x) at a.
If the right-hand and left-hand limits concur, then it is referred to as a common value as the limit of f(x) at x = a and denote it by lim x→a f(x).