Let \( y = \sin x \), and \( z = \log x \).
To differentiate with respect to \( \log x \), we use the chain rule:
\[
\frac{dy}{dz} = \frac{dy}{dx} \times \frac{dx}{dz}
\]
Now, compute each term:
\[
\frac{dy}{dx} = \cos x \quad \text{(derivative of \( \sin x \))}
\]
\[
\frac{dx}{dz} = \frac{1}{x} \quad \text{(derivative of \( \log x \))}
\]
So,
\[
\frac{dy}{dz} = \cos x \times \frac{1}{x} = \frac{\cos x}{x}
\]
Thus, the correct answer is option (1) \( x \cos x \).