
Which of the following statements are correct, if the threshold frequency of caesium is $ 5.16 \times 10^{14} \, \text{Hz} $?
In the photoelectric effect, electrons are ejected from a material when light of a frequency greater than the threshold frequency strikes it.
Option A: When yellow light (which has a frequency greater than the threshold frequency) is focused on caesium, electrons are ejected, and current flows. Therefore, this statement is correct.
Option B: Dimming the brightness of the yellow light reduces the number of photons, which in turn decreases the number of electrons ejected. Hence, the current in the ammeter is reduced. This statement is correct.
Option C: Red light has a frequency lower than the threshold frequency of caesium, so it does not have enough energy to eject electrons. Hence, no current will be produced. This statement is incorrect.
Option D: Blue light has a frequency greater than the threshold frequency, so it will eject electrons and form current in the ammeter. This statement is correct.
Thus, the correct answer is B, C, and D Only.
We are given the following formula for calculating wavelength:
λ = c / v
Where:
Substituting the values into the formula:
λ = (3 × 108) / (5.16 × 1014)
Now, performing the calculation:
λ = 581.39 nm
The wavelength of light is 581.39 nm (nanometers), which falls in the visible light spectrum, specifically near yellow light.
Analysis of the Photoelectric Effect:
Thus, based on the wavelength and the behavior of the photoelectric effect with different light intensities and frequencies, we can confirm that:
Given below are two statements: one is labelled as Assertion (A) and the other one is labelled as Reason (R).
Assertion (A): Emission of electrons in the photoelectric effect can be suppressed by applying a sufficiently negative electron potential to the photoemissive substance.
Reason (R): A negative electric potential, which stops the emission of electrons from the surface of a photoemissive substance, varies linearly with the frequency of incident radiation.
In light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]