Match the LIST-I with LIST-II. \[ \begin{array}{|l|l|} \hline \textbf{LIST I} & \textbf{LIST II} \\ \hline A. \ \text{Franklin Stahl} & I. \ \beta\text{-form of DNA} \\ B. \ \text{Maurice Wilkins} & II. \ \text{Estimated absolute amount of each Base} \\ C. \ \text{Erwin Chargaff} & III. \ \text{Proposed two polynucleotide chain} \\ D. \ \text{Watson and Crick} & IV. \ \text{Individual strands of Duplexes are entirely heavy or light} \\ \hline \end{array} \]
At 15 atm pressure, $ \text{NH}_3(g) $ is being heated in a closed container from 27°C to 347°C and as a result, it partially dissociates following the equation: $ 2\text{NH}_3(g) \rightleftharpoons \text{N}_2(g) + 3\text{H}_2(g) $ If the volume of the container remains constant and pressure increases to 50 atm, then calculate the percentage dissociation of $ \text{NH}_3(g) $
If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $
Consider the following reaction: $ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g) $ At 27°C, the standard entropy change of the process becomes -0.094 kJ/mol·K. Moreover, standard free energies for the formation of $ \text{CO}_2(g) $ and $ \text{CO}(g) $ are -394.4 and -137.2 kJ/mol, respectively. Predict the nature of the above chemical reaction.