If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $
Step 1: Relate the two equilibrium constants.
For the first reaction, the equilibrium constant is given by:
\[ K_p = \frac{[AB]^2}{[A_2][B_2]}. \] Now, for the second reaction: \[ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2, \] The equilibrium constant for this reaction, say \( K' \), can be written as: \[ K' = \frac{[A_2]^{1/2} [B_2]^{1/2}}{[AB]}. \]
Step 2: Calculate the relationship between \( K_p \) and \( K' \).
Since the stoichiometry of the second reaction is half of that in the first, the equilibrium constant \( K' \) is related to \( K_p \) as: \[ K' = \frac{1}{\sqrt{K_p}}. \] Thus, the correct answer is \( \frac{1}{\sqrt{K_p}} \).
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
At a given temperature and pressure, the equilibrium constant values for the equilibria are given below:
$ 3A_2 + B_2 \rightleftharpoons 2A_3B, \, K_1 $
$ A_3B \rightleftharpoons \frac{3}{2}A_2 + \frac{1}{2}B_2, \, K_2 $
The relation between $ K_1 $ and $ K_2 $ is:
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $