Consider the following reaction: $ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g) $ At 27°C, the standard entropy change of the process becomes -0.094 kJ/mol·K. Moreover, standard free energies for the formation of $ \text{CO}_2(g) $ and $ \text{CO}(g) $ are -394.4 and -137.2 kJ/mol, respectively. Predict the nature of the above chemical reaction.
Three metal rods of the same material and identical in all respects are joined as shown in the figure. The temperatures at the ends of these rods are maintained as indicated. Assuming no heat energy loss occurs through the curved surfaces of the rods, the temperature at the junction is
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $