At 15 atm pressure, $ \text{NH}_3(g) $ is being heated in a closed container from 27°C to 347°C and as a result, it partially dissociates following the equation: $ 2\text{NH}_3(g) \rightleftharpoons \text{N}_2(g) + 3\text{H}_2(g) $ If the volume of the container remains constant and pressure increases to 50 atm, then calculate the percentage dissociation of $ \text{NH}_3(g) $
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
Consider the following gas phase dissociation, PCl$_5$(g) $\rightleftharpoons$ PCl$_3$(g) + Cl$_2$(g) with equilibrium constant K$_p$ at a particular temperature and at pressure P. The degree of dissociation ($\alpha$) for PCl$_5$(g) is
PCl$_5$(g) $\rightleftharpoons$ PCl$_3$(g) + Cl$_2$(g)
Consider the following reaction: $ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g) $ At 27°C, the standard entropy change of the process becomes -0.094 kJ/mol·K. Moreover, standard free energies for the formation of $ \text{CO}_2(g) $ and $ \text{CO}(g) $ are -394.4 and -137.2 kJ/mol, respectively. Predict the nature of the above chemical reaction.